Convert AiClassifier to ES module
This commit is contained in:
parent
a7d2aca60f
commit
83166c8c4f
5 changed files with 69 additions and 77 deletions
|
@ -1,260 +0,0 @@
|
|||
"use strict";
|
||||
var { Services } = globalThis || ChromeUtils.importESModule("resource://gre/modules/Services.sys.mjs");
|
||||
var { NetUtil } = ChromeUtils.importESModule("resource://gre/modules/NetUtil.sys.mjs");
|
||||
var { FileUtils } = ChromeUtils.importESModule("resource://gre/modules/FileUtils.sys.mjs");
|
||||
var { aiLog, setDebug } = ChromeUtils.import("resource://aifilter/modules/logger.jsm");
|
||||
|
||||
var EXPORTED_SYMBOLS = ["AiClassifier"];
|
||||
|
||||
const SYSTEM_PREFIX = `You are an email-classification assistant.
|
||||
Read the email below and the classification criterion provided by the user.
|
||||
`;
|
||||
|
||||
const DEFAULT_CUSTOM_SYSTEM_PROMPT = "Determine whether the email satisfies the user's criterion.";
|
||||
|
||||
const SYSTEM_SUFFIX = `
|
||||
Return ONLY a JSON object on a single line of the form:
|
||||
{"match": true} - if the email satisfies the criterion
|
||||
{"match": false} - otherwise
|
||||
|
||||
Do not add any other keys, text, or formatting.`;
|
||||
|
||||
let gEndpoint = "http://127.0.0.1:5000/v1/classify";
|
||||
let gTemplateName = "openai";
|
||||
let gCustomTemplate = "";
|
||||
let gCustomSystemPrompt = DEFAULT_CUSTOM_SYSTEM_PROMPT;
|
||||
let gTemplateText = "";
|
||||
|
||||
let gAiParams = {
|
||||
max_tokens: 4096,
|
||||
temperature: 0.6,
|
||||
top_p: 0.95,
|
||||
seed: -1,
|
||||
repetition_penalty: 1.0,
|
||||
top_k: 20,
|
||||
min_p: 0,
|
||||
presence_penalty: 0,
|
||||
frequency_penalty: 0,
|
||||
typical_p: 1,
|
||||
tfs: 1,
|
||||
};
|
||||
|
||||
let gCache = new Map();
|
||||
let gCacheLoaded = false;
|
||||
let gCacheFile;
|
||||
|
||||
function ensureCacheFile() {
|
||||
if (!gCacheFile) {
|
||||
gCacheFile = Services.dirsvc.get("ProfD", Ci.nsIFile);
|
||||
gCacheFile.append("aifilter_cache.json");
|
||||
}
|
||||
}
|
||||
|
||||
function loadCache() {
|
||||
if (gCacheLoaded) {
|
||||
return;
|
||||
}
|
||||
ensureCacheFile();
|
||||
aiLog(`[AiClassifier] Loading cache from ${gCacheFile.path}`, {debug: true});
|
||||
try {
|
||||
if (gCacheFile.exists()) {
|
||||
let stream = Cc["@mozilla.org/network/file-input-stream;1"].createInstance(Ci.nsIFileInputStream);
|
||||
stream.init(gCacheFile, -1, 0, 0);
|
||||
let data = NetUtil.readInputStreamToString(stream, stream.available());
|
||||
stream.close();
|
||||
aiLog(`[AiClassifier] Cache file contents: ${data}`, {debug: true});
|
||||
let obj = JSON.parse(data);
|
||||
for (let [k, v] of Object.entries(obj)) {
|
||||
aiLog(`[AiClassifier] ⮡ Loaded entry '${k}' → ${v}`, {debug: true});
|
||||
gCache.set(k, v);
|
||||
}
|
||||
aiLog(`[AiClassifier] Loaded ${gCache.size} cache entries`, {debug: true});
|
||||
} else {
|
||||
aiLog(`[AiClassifier] Cache file does not exist`, {debug: true});
|
||||
}
|
||||
} catch (e) {
|
||||
aiLog(`Failed to load cache`, {level: 'error'}, e);
|
||||
}
|
||||
gCacheLoaded = true;
|
||||
}
|
||||
|
||||
function saveCache(updatedKey, updatedValue) {
|
||||
ensureCacheFile();
|
||||
aiLog(`[AiClassifier] Saving cache to ${gCacheFile.path}`, {debug: true});
|
||||
if (typeof updatedKey !== "undefined") {
|
||||
aiLog(`[AiClassifier] ⮡ Persisting entry '${updatedKey}' → ${updatedValue}`, {debug: true});
|
||||
}
|
||||
try {
|
||||
let obj = Object.fromEntries(gCache);
|
||||
let data = JSON.stringify(obj);
|
||||
let stream = Cc["@mozilla.org/network/file-output-stream;1"].createInstance(Ci.nsIFileOutputStream);
|
||||
stream.init(gCacheFile,
|
||||
FileUtils.MODE_WRONLY | FileUtils.MODE_CREATE | FileUtils.MODE_TRUNCATE,
|
||||
FileUtils.PERMS_FILE,
|
||||
0);
|
||||
stream.write(data, data.length);
|
||||
stream.close();
|
||||
} catch (e) {
|
||||
aiLog(`Failed to save cache`, {level: 'error'}, e);
|
||||
}
|
||||
}
|
||||
|
||||
function loadTemplate(name) {
|
||||
try {
|
||||
let url = `resource://aifilter/prompt_templates/${name}.txt`;
|
||||
let xhr = new XMLHttpRequest();
|
||||
xhr.open("GET", url, false);
|
||||
xhr.overrideMimeType("text/plain");
|
||||
xhr.send();
|
||||
if (xhr.status === 0 || xhr.status === 200) {
|
||||
return xhr.responseText;
|
||||
}
|
||||
} catch (e) {
|
||||
aiLog(`Failed to load template '${name}':`, {level: 'error'}, e);
|
||||
}
|
||||
return "";
|
||||
}
|
||||
|
||||
function setConfig(config = {}) {
|
||||
if (config.endpoint) {
|
||||
gEndpoint = config.endpoint;
|
||||
}
|
||||
if (config.templateName) {
|
||||
gTemplateName = config.templateName;
|
||||
}
|
||||
if (typeof config.customTemplate === "string") {
|
||||
gCustomTemplate = config.customTemplate;
|
||||
}
|
||||
if (typeof config.customSystemPrompt === "string") {
|
||||
gCustomSystemPrompt = config.customSystemPrompt;
|
||||
}
|
||||
if (config.aiParams && typeof config.aiParams === "object") {
|
||||
for (let [k, v] of Object.entries(config.aiParams)) {
|
||||
if (k in gAiParams && typeof v !== "undefined") {
|
||||
gAiParams[k] = v;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (typeof config.debugLogging === "boolean") {
|
||||
setDebug(config.debugLogging);
|
||||
}
|
||||
gTemplateText = gTemplateName === "custom" ? gCustomTemplate : loadTemplate(gTemplateName);
|
||||
aiLog(`[AiClassifier] Endpoint set to ${gEndpoint}`, {debug: true});
|
||||
aiLog(`[AiClassifier] Template set to ${gTemplateName}`, {debug: true});
|
||||
}
|
||||
|
||||
function buildSystemPrompt() {
|
||||
return SYSTEM_PREFIX + (gCustomSystemPrompt || DEFAULT_CUSTOM_SYSTEM_PROMPT) + SYSTEM_SUFFIX;
|
||||
}
|
||||
|
||||
function buildPrompt(body, criterion) {
|
||||
aiLog(`[AiClassifier] Building prompt with criterion: "${criterion}"`, {debug: true});
|
||||
const data = {
|
||||
system: buildSystemPrompt(),
|
||||
email: body,
|
||||
query: criterion,
|
||||
};
|
||||
let template = gTemplateText || loadTemplate(gTemplateName);
|
||||
return template.replace(/{{\s*(\w+)\s*}}/g, (m, key) => data[key] || "");
|
||||
}
|
||||
|
||||
function getCachedResult(cacheKey) {
|
||||
loadCache();
|
||||
if (cacheKey && gCache.has(cacheKey)) {
|
||||
aiLog(`[AiClassifier] Cache hit for key: ${cacheKey}`, {debug: true});
|
||||
return gCache.get(cacheKey);
|
||||
}
|
||||
return null;
|
||||
}
|
||||
|
||||
function buildPayload(text, criterion) {
|
||||
let payloadObj = Object.assign({
|
||||
prompt: buildPrompt(text, criterion)
|
||||
}, gAiParams);
|
||||
return JSON.stringify(payloadObj);
|
||||
}
|
||||
|
||||
function parseMatch(result) {
|
||||
const rawText = result.choices?.[0]?.text || "";
|
||||
const thinkText = rawText.match(/<think>[\s\S]*?<\/think>/gi)?.join('') || '';
|
||||
aiLog('[AiClassifier] ⮡ Reasoning:', {debug: true}, thinkText);
|
||||
const cleanedText = rawText.replace(/<think>[\s\S]*?<\/think>/gi, "").trim();
|
||||
aiLog('[AiClassifier] ⮡ Cleaned Response Text:', {debug: true}, cleanedText);
|
||||
const obj = JSON.parse(cleanedText);
|
||||
return obj.matched === true || obj.match === true;
|
||||
}
|
||||
|
||||
function cacheResult(cacheKey, matched) {
|
||||
if (cacheKey) {
|
||||
aiLog(`[AiClassifier] Caching entry '${cacheKey}' → ${matched}`, {debug: true});
|
||||
gCache.set(cacheKey, matched);
|
||||
saveCache(cacheKey, matched);
|
||||
}
|
||||
}
|
||||
|
||||
function classifyTextSync(text, criterion, cacheKey = null) {
|
||||
const cached = getCachedResult(cacheKey);
|
||||
if (cached !== null) {
|
||||
return cached;
|
||||
}
|
||||
|
||||
const payload = buildPayload(text, criterion);
|
||||
|
||||
aiLog(`[AiClassifier] Sending classification request to ${gEndpoint}`, {debug: true});
|
||||
|
||||
let matched = false;
|
||||
try {
|
||||
let xhr = new XMLHttpRequest();
|
||||
xhr.open("POST", gEndpoint, false);
|
||||
xhr.setRequestHeader("Content-Type", "application/json");
|
||||
xhr.send(payload);
|
||||
|
||||
if (xhr.status >= 200 && xhr.status < 300) {
|
||||
const result = JSON.parse(xhr.responseText);
|
||||
aiLog(`[AiClassifier] Received response:`, {debug: true}, result);
|
||||
matched = parseMatch(result);
|
||||
cacheResult(cacheKey, matched);
|
||||
} else {
|
||||
aiLog(`HTTP status ${xhr.status}`, {level: 'warn'});
|
||||
}
|
||||
} catch (e) {
|
||||
aiLog(`HTTP request failed`, {level: 'error'}, e);
|
||||
}
|
||||
|
||||
return matched;
|
||||
}
|
||||
|
||||
async function classifyText(text, criterion, cacheKey = null) {
|
||||
const cached = getCachedResult(cacheKey);
|
||||
if (cached !== null) {
|
||||
return cached;
|
||||
}
|
||||
|
||||
const payload = buildPayload(text, criterion);
|
||||
|
||||
aiLog(`[AiClassifier] Sending classification request to ${gEndpoint}`, {debug: true});
|
||||
|
||||
try {
|
||||
const response = await fetch(gEndpoint, {
|
||||
method: "POST",
|
||||
headers: { "Content-Type": "application/json" },
|
||||
body: payload,
|
||||
});
|
||||
|
||||
if (!response.ok) {
|
||||
aiLog(`HTTP status ${response.status}`, {level: 'warn'});
|
||||
return false;
|
||||
}
|
||||
|
||||
const result = await response.json();
|
||||
aiLog(`[AiClassifier] Received response:`, {debug: true}, result);
|
||||
const matched = parseMatch(result);
|
||||
cacheResult(cacheKey, matched);
|
||||
return matched;
|
||||
} catch (e) {
|
||||
aiLog(`HTTP request failed`, {level: 'error'}, e);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
var AiClassifier = { classifyText, classifyTextSync, setConfig };
|
Loading…
Add table
Add a link
Reference in a new issue