"use strict"; var { Services } = globalThis || ChromeUtils.importESModule("resource://gre/modules/Services.sys.mjs"); var { NetUtil } = ChromeUtils.importESModule("resource://gre/modules/NetUtil.sys.mjs"); var { FileUtils } = ChromeUtils.importESModule("resource://gre/modules/FileUtils.sys.mjs"); var { aiLog, setDebug } = ChromeUtils.import("resource://aifilter/modules/logger.jsm"); var EXPORTED_SYMBOLS = ["AiClassifier"]; const SYSTEM_PREFIX = `You are an email-classification assistant. Read the email below and the classification criterion provided by the user. `; const DEFAULT_CUSTOM_SYSTEM_PROMPT = "Determine whether the email satisfies the user's criterion."; const SYSTEM_SUFFIX = ` Return ONLY a JSON object on a single line of the form: {"match": true} - if the email satisfies the criterion {"match": false} - otherwise Do not add any other keys, text, or formatting.`; let gEndpoint = "http://127.0.0.1:5000/v1/classify"; let gTemplateName = "openai"; let gCustomTemplate = ""; let gCustomSystemPrompt = DEFAULT_CUSTOM_SYSTEM_PROMPT; let gTemplateText = ""; let gAiParams = { max_tokens: 4096, temperature: 0.6, top_p: 0.95, seed: -1, repetition_penalty: 1.0, top_k: 20, min_p: 0, presence_penalty: 0, frequency_penalty: 0, typical_p: 1, tfs: 1, }; let gCache = new Map(); let gCacheLoaded = false; let gCacheFile; function ensureCacheFile() { if (!gCacheFile) { gCacheFile = Services.dirsvc.get("ProfD", Ci.nsIFile); gCacheFile.append("aifilter_cache.json"); } } function loadCache() { if (gCacheLoaded) { return; } ensureCacheFile(); aiLog(`[AiClassifier] Loading cache from ${gCacheFile.path}`, {debug: true}); try { if (gCacheFile.exists()) { let stream = Cc["@mozilla.org/network/file-input-stream;1"].createInstance(Ci.nsIFileInputStream); stream.init(gCacheFile, -1, 0, 0); let data = NetUtil.readInputStreamToString(stream, stream.available()); stream.close(); aiLog(`[AiClassifier] Cache file contents: ${data}`, {debug: true}); let obj = JSON.parse(data); for (let [k, v] of Object.entries(obj)) { aiLog(`[AiClassifier] ⮡ Loaded entry '${k}' → ${v}`, {debug: true}); gCache.set(k, v); } aiLog(`[AiClassifier] Loaded ${gCache.size} cache entries`, {debug: true}); } else { aiLog(`[AiClassifier] Cache file does not exist`, {debug: true}); } } catch (e) { aiLog(`Failed to load cache`, {level: 'error'}, e); } gCacheLoaded = true; } function saveCache(updatedKey, updatedValue) { ensureCacheFile(); aiLog(`[AiClassifier] Saving cache to ${gCacheFile.path}`, {debug: true}); if (typeof updatedKey !== "undefined") { aiLog(`[AiClassifier] ⮡ Persisting entry '${updatedKey}' → ${updatedValue}`, {debug: true}); } try { let obj = Object.fromEntries(gCache); let data = JSON.stringify(obj); let stream = Cc["@mozilla.org/network/file-output-stream;1"].createInstance(Ci.nsIFileOutputStream); stream.init(gCacheFile, FileUtils.MODE_WRONLY | FileUtils.MODE_CREATE | FileUtils.MODE_TRUNCATE, FileUtils.PERMS_FILE, 0); stream.write(data, data.length); stream.close(); } catch (e) { aiLog(`Failed to save cache`, {level: 'error'}, e); } } function loadTemplate(name) { try { let url = `resource://aifilter/prompt_templates/${name}.txt`; let xhr = new XMLHttpRequest(); xhr.open("GET", url, false); xhr.overrideMimeType("text/plain"); xhr.send(); if (xhr.status === 0 || xhr.status === 200) { return xhr.responseText; } } catch (e) { aiLog(`Failed to load template '${name}':`, {level: 'error'}, e); } return ""; } function setConfig(config = {}) { if (config.endpoint) { gEndpoint = config.endpoint; } if (config.templateName) { gTemplateName = config.templateName; } if (typeof config.customTemplate === "string") { gCustomTemplate = config.customTemplate; } if (typeof config.customSystemPrompt === "string") { gCustomSystemPrompt = config.customSystemPrompt; } if (config.aiParams && typeof config.aiParams === "object") { for (let [k, v] of Object.entries(config.aiParams)) { if (k in gAiParams && typeof v !== "undefined") { gAiParams[k] = v; } } } if (typeof config.debugLogging === "boolean") { setDebug(config.debugLogging); } gTemplateText = gTemplateName === "custom" ? gCustomTemplate : loadTemplate(gTemplateName); aiLog(`[AiClassifier] Endpoint set to ${gEndpoint}`, {debug: true}); aiLog(`[AiClassifier] Template set to ${gTemplateName}`, {debug: true}); } function buildSystemPrompt() { return SYSTEM_PREFIX + (gCustomSystemPrompt || DEFAULT_CUSTOM_SYSTEM_PROMPT) + SYSTEM_SUFFIX; } function buildPrompt(body, criterion) { aiLog(`[AiClassifier] Building prompt with criterion: "${criterion}"`, {debug: true}); const data = { system: buildSystemPrompt(), email: body, query: criterion, }; let template = gTemplateText || loadTemplate(gTemplateName); return template.replace(/{{\s*(\w+)\s*}}/g, (m, key) => data[key] || ""); } function getCachedResult(cacheKey) { loadCache(); if (cacheKey && gCache.has(cacheKey)) { aiLog(`[AiClassifier] Cache hit for key: ${cacheKey}`, {debug: true}); return gCache.get(cacheKey); } return null; } function buildPayload(text, criterion) { let payloadObj = Object.assign({ prompt: buildPrompt(text, criterion) }, gAiParams); return JSON.stringify(payloadObj); } function parseMatch(result) { const rawText = result.choices?.[0]?.text || ""; const thinkText = rawText.match(/[\s\S]*?<\/think>/gi)?.join('') || ''; aiLog('[AiClassifier] ⮡ Reasoning:', {debug: true}, thinkText); const cleanedText = rawText.replace(/[\s\S]*?<\/think>/gi, "").trim(); aiLog('[AiClassifier] ⮡ Cleaned Response Text:', {debug: true}, cleanedText); const obj = JSON.parse(cleanedText); return obj.matched === true || obj.match === true; } function cacheResult(cacheKey, matched) { if (cacheKey) { aiLog(`[AiClassifier] Caching entry '${cacheKey}' → ${matched}`, {debug: true}); gCache.set(cacheKey, matched); saveCache(cacheKey, matched); } } function classifyTextSync(text, criterion, cacheKey = null) { const cached = getCachedResult(cacheKey); if (cached !== null) { return cached; } const payload = buildPayload(text, criterion); aiLog(`[AiClassifier] Sending classification request to ${gEndpoint}`, {debug: true}); let matched = false; try { let xhr = new XMLHttpRequest(); xhr.open("POST", gEndpoint, false); xhr.setRequestHeader("Content-Type", "application/json"); xhr.send(payload); if (xhr.status >= 200 && xhr.status < 300) { const result = JSON.parse(xhr.responseText); aiLog(`[AiClassifier] Received response:`, {debug: true}, result); matched = parseMatch(result); cacheResult(cacheKey, matched); } else { aiLog(`HTTP status ${xhr.status}`, {level: 'warn'}); } } catch (e) { aiLog(`HTTP request failed`, {level: 'error'}, e); } return matched; } async function classifyText(text, criterion, cacheKey = null) { const cached = getCachedResult(cacheKey); if (cached !== null) { return cached; } const payload = buildPayload(text, criterion); aiLog(`[AiClassifier] Sending classification request to ${gEndpoint}`, {debug: true}); try { const response = await fetch(gEndpoint, { method: "POST", headers: { "Content-Type": "application/json" }, body: payload, }); if (!response.ok) { aiLog(`HTTP status ${response.status}`, {level: 'warn'}); return false; } const result = await response.json(); aiLog(`[AiClassifier] Received response:`, {debug: true}, result); const matched = parseMatch(result); cacheResult(cacheKey, matched); return matched; } catch (e) { aiLog(`HTTP request failed`, {level: 'error'}, e); return false; } } var AiClassifier = { classifyText, classifyTextSync, setConfig };